入力地盤変位として側方流動(lateral spread)を定義している³⁾。側方流動は,繰り返しのない静的な変形で,パイ

を 6% とした。X65 の降伏比 (YS/TS) は 0.84, X80 は 0.89 になる。応力 - ひずみ曲線から R-O 式の定数を求め, (5) 式と(6) 式に代入すると, X65 と X80 の限界圧縮ひ ずみ曲線が Fig. 2 のように得られる。

Fig. 2 に示すように, X65 の限界圧縮ひずみは / が45 以上の範囲で JGA 式と同程度の値になるが, X80 は

を仮定し,有限要素解析(FEA: finite element analysis)で 限界圧縮ひずみおよび最大引張ひずみを計算した。各パイ プは,外径(OD)762mm,管厚()15.6mm,OD/=49 とした。設計係数(design factor)は0.00,0.40,0.60, 0.72の4段階とした。また,パイプには上部に引張,下部 に圧縮ひずみが発生するように純曲げ変形を与えた。曲げ 変形によって座屈波形が発生した状態のFEAモデルを Fig.4に示す。

上述の曲げ変形を受ける座屈波形直近のパイプ断面にお ける軸ひずみ分布を Fig. 5 に示す。図の青線が軸ひずみの 分布を表している。中立軸は内圧の影響によって引張側に シフトしており,最大圧縮ひずみの絶対値は最大引張ひず みよりも大きくなっている。最大曲げモーメント時におけ る最大圧縮ひずみを限界圧縮ひずみ,最大引張ひずみを限 界引張ひずみと呼ぶ。さらに,灰色の線が曲げひずみ分布 を表している。曲げひずみは圧縮ひずみと引張ひずみの平 均値であり,限界曲げひずみは限界圧縮ひずみと限界引張 ひずみの平均値である。本文では限界曲げひずみは言及せ ず,限界圧縮ひずみと限界引張ひずみを比較する。

幾何学的初期不整⁷⁾を考慮した高変形 X80 の平均限界 圧縮ひずみと平均限界引張ひずみを Table 3 に示し, X80 の値を Table 4 に示す。平均限界圧縮ひずみとは,座屈波 形を中心として管軸方向に分布する圧縮ひずみを標点距離 内で平均化したものである。標点距離を平均管径の1倍, 2倍,3倍とした平均限界圧縮ひずみをそれぞれ ElDer, E2Der,E3Derと表す。平均限界引張ひずみについても同様で ある。

たとえば,高変形 X80 の平均限界圧縮ひずみ ε2Der は,設 計係数 0.00 で 1.87%, 0.72 で 2.82% となっており,設計係 数に従って増加している。一方,平均限界引張ひずみ ε2Der は,設計係数 0.00 で 1.16%, 0.72 で 0.86% となっており, 設計係数の増加にともなって減少している。また, X80 の 平均限界圧縮ひずみ ε2Der および平均限界引張ひずみ ε2Der も 高変形 X80 と同様な傾向を示しているが, X80 の平均限界 ひずみは高変形 X80 よりも小さい。このことにより, X80 の変形性能が小さいことが分かる。

4.2 局部座屈に対する安全性検討

高変形 X80 と X80 の局部座屈に対する安全性を検討する ため, Table 3 と 4 の計算結果のうち,パイプの実力値を表 す平均限界圧縮ひずみ *ε*2Dcr を抽出して **Table 5** と 6 に示 す。同図には,平均限界圧縮ひずみ *ε*2Dcr を安全率 1.25 で除 した許容限界圧縮ひずみを示し,比較のため,JGA 式で計 算した許容ひずみも示す。

高変形 X80 の許容限界圧縮ひずみは,内圧がない場合に 1.50%であり,設計係数とともに増加し,設計係数が 0.72 の場合に 2.26%となっている。一方,JGA 式で求めた許容 ひずみは 0.71 であり,高変形 X80 の変形性能はこれよりも 大きいことが分かる。X80% 変形 X80 よりも小さいが JGA 式よりも大きい。これより, 一般的な耐震性能が要求される場合には,両者ともに採用 可能であるが,1.5% 程度の平均限界曲げひずみが要求され る地域においては高変形 X80 が選択される。

5. 曲げ変形に対するひずみ基準の安全性評価 (円周溶接)

近年のラインパイプ材料は高強度化とともに高靱性化を 達成しており,実施工で発生する欠陥より大きなき裂状の 傷を想定しても,脆性破壊の危険性は小さいと考えられて いる。したがって,本報で検討する大変形に対しては,脆 性破壊よりも塑性崩壊や延性き裂の進展による損傷が供用 不適合要因になると考えられる。そこで本章では,延性破 壊現象の初期状態である延性き裂の発生に着目し,ノッチ 先端での限界相当塑性ひずみによる安全性評価を行う。

5.1 円周溶接の延性き裂発生限界

母材にはX80相当の鋼材を用い,GMAW(gas metal arc welding)により突合わせ継手を製作した。溶接条件は実パ イプラインの円周溶接を模擬し,溶接金属は母材に対して YS,TSともにオーバーマッチさせた。継手からFig.6に 示すwide plate(WP)試験片を製作した。放電加工により 溶接金属最終パス中央部と粗粒溶接熱影響部(CGHAZ) に深さ3mm,幅70mmおよび深さ5mm,幅70mmの半 楕円状のノッチを導入した。また,半楕円状ノッチの先端 半径はいずれも0.1mmとした。試験中はノッチ最深部を マイクロスコープで観察し,延性き裂の発生とグローバル ひずみとの関係をモニタリングした。

Fig. 6の試験体を3次元連続体要素でモデル化して FEA

を実施した。クリップゲージ変位,グローバルひずみの挙動が計測値とFEAの結果が一致していることを確認した上で,実験で延性き裂が発生した段階におけるグローバルひずみを求めた。今回使用した溶接金属とX80クラス鋼材の延性き裂発生限界相当塑性ひずみはそれぞれ0.69と1.2であった。

5.2 溶接部の延性き裂発生限界に対する 安全性検討

Table 3,4 に示した高変形 X80 と X80 の曲げ変形解析か ら外径 762 mm パイプに対する圧縮ひずみ限界に対する引 張ひずみを読み取り,今回の一連の解析で得られたノッチ 底での相当塑性ひずみが限界値に達する時の引張ひずみを 比較し,圧縮側の局部座屈限界と引張側の延性き裂発生限 界を比較する。

Table 7,8に比較結果を示す。HAZの延性き裂発生限界に関する相当塑性ひずみ値につ

Table 8	Equivalent plastic strain corresponds to the two times
	outside diameter average critical tensile strain of the
	X80 conventional pipe

OD (mm)	Design factor	$\epsilon_{2\mathrm{Dcr}}$ (%)	WM notch		HAZ notch	
		Ten.	$\varepsilon_{\rm Tcr}$	Ten./ $\varepsilon_{\rm Tcr}$	$\varepsilon_{\mathrm{Tcr}}$	Ten./ $\varepsilon_{\rm Tcr}$
762	0.00	0.65	0.90	0.72	2.62	0.25
	0.40	0.54			1.41	0.38
	0.60	0.53	1.13	0.47	1.31	0.40
	0.72	0.55	1.08	0.51	1.21	0.450.6

6. 結言

国内における高圧ガスパイプラインの耐震設計の基本的 な考え方を概説し,X80のような高強度パイプラインの変 形性能に関する課題を示した。ラインパイプの変形性能を 向上させる一般的な方法は,管厚を増加させることである。 しかし,管厚を増加させれば,パイプラインの建設費用が 増加することが知られている。

高変形 LP は変形性能に関する高強度材の課題を克服し, 管厚を増加させることなく変形性能を向上させたラインパ イプである。高変形 LP を高圧ガスパイプラインに適用す ることにより,建設費用の増加を最小限に抑えながら,地 震地帯や凍土地帯における安全性を向上させることができ る。

今後の高圧ガスパイプラインの基本設計に際し,本報告

に記述した高強度ラインパイプの設計コンセプトや変形性 能が一助となれば幸いである。

参考文献

- 1) Glover, A. Application of Gade 550 (X80) and Grade 690 (X100) in Arctic Climates. Proc. of Pipe Dreamers' Conference on Application and Evaluation of High-Grade Linepipes in Hostile Environments. 2002 .
- 2) 日本ガス協会 . 高圧ガス導管耐震設計指針 . JGA 指 -206-03 , 2004 .
- 3)日本ガス協会 . 高圧ガス導管液状化耐震設計指針 . JGA 指 -207-01, 2001.
- 4) Suzuki, N.; Endo, S.; Yoshikawa, M.; Toyoda, M. Effect of Strainhardening Exponent on Inelastic Local Buckling Strength and Mechanical Properties of Linepipes. Proc. of the 20th OMAE. 2001, paper no. OMAE2001/MAT 3104.
- 5) Suzuki, N.; Toyoda, M. Critical Compressive Strain of Linepipes Related to Work-Hardening Parameters. Proc. of the 21st Int. Conf. on OMAE. 2002, paper no. OMAE2002-28253.
- 6) Zimmerman, T.; Timms, C.; Zhou, J.; Glover, A.; Suzuki, N. Local Buckling and Post-Buckling Behavior of High Strength Linepipe. Pipeline Technology Conference 2004.
- 7) Suzuki, N.; Kondo, J.; Endo, S.; Ishikawa, N.; Okatsu, M.; Shimamura, J. Effect of Geometric Imperfection on Bending Capacity of X80 Linepipe. Proc. of the 6th Int. Pipeline Conf. 2006, paper no. IPC2006-10070.
- 8) Gerard, G. Compressive and Tortional Buckling of Thin Wall Cylinders in Yielded Region. NACA. 1956, TN-No. 3726.
- 9. Ramberg, W. Osgood, W.R. Description of Stress-Strain Curves by Three Parameters. NACA, 1943, TN.902.
 - 10) Zimmerman, T. J. E.; Stephens, M. J.; DeGeer, D. D.; Chen, C. Compressive Strain Limits for Buried Pipelines. 1995 OMAE. 1995, vol. V, Pipeline Technology, p. 365–378.

