KAWASAKI STEEL GIHO Vol.31 (1999) No.3

9 # = % & 4 ž TS590 MPa

TS590 MPa Grade Hot Rolled Thin Gauge Sheet Steels with Excellent Crashworthiness and Formability

(Tetsuo Shimizu) (Norio Kanamoto) (Yoshimitsu Fukui)

9 4 ž TS590 MPa dual phase + } ž 2 ' 8 7 7 = flł 3 & Ł ž , ! # 2 3 30 , \$' = 9 \$' 103 s21 & ° ı 3 -10 ł 3 ~ 7 6 fl Ž 3 fi % & O! # 3 ž . % 143 š ' 6/%& š/ Ł Ł # (= % P 1.4 2.0 mm ' dual phase Ł # 4 ž 9 # % 6 5 Ž šŁ

Synopsis:

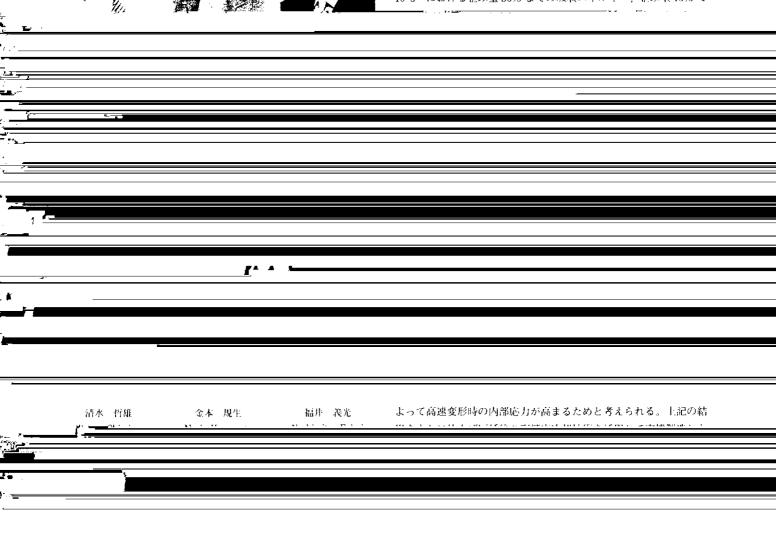
The effect of microstructure on absorbed energy at high strain rate has been investigated to develop 590 MPa TS grade hot-rolled dual-phase sheet steels with excellent crashworthiness and formability. Increase of ferrite-martensite perimeter led to higher absorbed energy of up to 30 strain and higher n-value at 10 strain during 2 3 103 s21 strain rate deformation. This is attributed to the dispersion of fine martensite which enhances internal stress during high strain rate deformation. On the basis of the above described result, a hot rolled dual phase steel of from 1.4 to 2.0 mm in thickness with low yield ratio, high elongation, excellent crashworthiness and formability can be developed with a new precisely cooling process after finishing rolling.

(c)JFE Steel Corporation, 2003

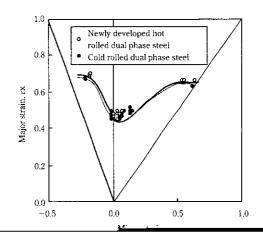
衝突エネルギー吸収特性とプレス成形性に優れた TS590 MPa 級薄物熱間圧延鋼板*

川崎製鉄技報 31 (1999) 3, 176-180

TS590 MPa Grade Hot Rolled Thin Gauge Sheet Steels with Excellent Crashworthiness and Formability



要旨


衝突エネルギー吸収特性、プレス成形性に優れた TS590 MPa 級 dual phase 熱延鯛板の開発を目的として、高速変形時のエネルギー吸収特性に及ぼす組織の影響を調べた。単位面積当たりのフェライト・マルテンサイト境界長さが増加するにしたがって、歪み速度 2×10 s-1 における歪み量 30% までの吸収エネルギー、歪み量 10% で

は、応力-歪み曲線を積分して求めた。吸収エネルギーと単位面積 当たりのフェライト-マルテンサイト境界長さとの関係を Fig. 2 に

	わている ⁶ 。	び特性が低下する。
<i>f-</i>	in given	<u> </u>
<u></u>	<u>Mary Carlors</u>	
्रि. च		
<u> </u>		
4°2		
V		
<u>.</u>		
3	l_{v}	
<u>.</u>		
-		
_ مِد		
: <u> </u>		
,		
<u> </u>	ギーの寄与を減少させるため、高速変形時には内部応力の緩和がおこりにくくなると考えられる。そのため、歪み速度 2×10³ s - 1 では 本形知期のよ 値が増上し、土にたが形景が増上してまっ 値が低下	この技術を板厚 1.4~2.0 mm の薄物 dual phase 熱延鋼板の製造に適用した。 Photo 1 (5.1) (5.1) に板層 1.4 mm の真矯庭冷却適田鋼レ従业冷
1 .		
Į		

6 結 言

衝突エネルギー吸収特性、プレス成形性に優れた TS590 MPa 級 dual phase 熱延鋼板の開発を目的として、高速変形時のエネルギー吸収特性に及ぼす組織の影響を調べ以下の結論を得た。

- (1) 単位面積当たりのフェライト-マルテンサイト境界長さが増加するにしたがって、歪み速度 2×10³ s-1 における歪み量30% までの吸収エネルギーが増大する。
- (2) 単位面積当たりのフェライト-マルテンサイト境界長さが増加するにしたがって、歪み速度 $2\times 10^3\,\mathrm{s}^{-1}$ における歪み量10% でのn 値も増大する。